
How to choose a duplicate finder app for
Mac: A transparent evaluation
methodology
Objective criteria for comparing Duplicate Finder apps.

This methodology is based on hands-on experience in developing and testing macOS utilities

(Nektony, since 2011).

Table of Contents

1. TL;DR

2. Why this methodology exists

3. Who this methodology is for

4. Terms and definitions

5. Metrics and result calculation

6. Core principle

7. Scoring system

8. Evaluation criteria

9. L1: Must Have

10. L2: Should Have

11. L3: Nice to Have

12. 7 datasets

13. Risks and common pitfalls

14. Testing procedure

15. Total score calculation

16. Final report template

17. Calculator

18. Download the full methodology

19. FAQ

20. Disclaimer

21. License

TL;DR

For users

A safe duplicate finder app must:

Ask for confirmation before removal

Move files to Trash (not delete permanently)

Warn or restrict deleting the last file in a duplicate group

Never delete system files

To check any app quickly, use the calculator

For reviewers and QA

The methodology includes 53 criteria across 3 levels:

L1 (8 criteria) — blockers; failing any criterion means the app is "not recommended"

L2 (23) — important for usability

L3 (22) — bonuses

Why this methodology exists

In the Mac App Store and on developer websites, there are dozens of duplicate finder apps.

All of them promise to "quickly find and safely remove duplicates."

But how to find out which one is actually safe?

A wrong choice can be costly:

Important files might be deleted (false positives)

Photo Library or Music Library might be damaged

Real duplicates might be missed (low accuracy)

The app crashes on large file sets

The Nektony team has been developing macOS utilities since 2011. Over the years, we've

analyzed the behavior of dozens of competing products and collected feedback from hundreds

of thousands of users. Based on that experience, we created a transparent evaluation

methodology: 53 criteria that do matter for safe operation.

We publish it transparently so that:

You can evaluate any app on your own

Journalists and reviewers have an objective comparison framework

Quality standards in the duplicate removal category become higher for everyone

Who this methodology is for

Audience How to use

Regular users Use the calculator — it walks you through key criteria

Journalists and reviewers Download the full methodology to compare apps objectively

QA engineers The PDF includes step-by-step tests, scripts, and a report template

Developers Use it as a requirements checklist for your own product

Terms and definitions

Before starting the evaluation, it's important to understand the terminology:

Term Meaning

Exact Duplicate Files with identical content (bit-for-bit)

Similar File Files with visual or audio similarity (not byte-for-byte)

Duplicate Group A set of 2+ files considered to be copies of each other

Original The file that remains after duplicates are removed

False Positive A unique file incorrectly marked as a duplicate

False Negative A real duplicate that was not detected

Metrics and result calculation

For objective evaluation purposes, we use standard metrics from Information Retrieval:

Core metrics

Metric Abbreviated Description

True Positive TP Duplicate Groups identified correctly

False Positive FP Unique files incorrectly marked as duplicates

False Negative FN Real duplicates that were not found

How we count TP/FP/FN (unit of measurement)

The unit of measurement is a Duplicate Group (a set of 2+ files).

TP: An expected group is counted as found if the app found all files in the group and

combined them into one group.

FP: The number of groups that contain at least one unique file presented by the app as a

duplicate (not an exact duplicate matched by content).

FN: The number of Duplicate Groups the app failed to find, or found incompletely (at least

one file missing).

If the app otherwise groups files (merging/splitting)

Splitting one expected group into several counts as FN (group found incompletely).

Merging two expected groups into one counts as FN for both groups (incorrect grouping).

Passing L1 requires full and correct grouping of Exact Duplicates.

Calculated metrics

Metric Formula What it measures Target

Recall TP / (TP + FN) What portion of real duplicates were found? ≥ 99%

Precision TP / (TP + FP) What portion of found items are truly duplicates? 100%

Measurement scope

Recall is measured on datasets 1–4 (known number of duplicates).

Precision (FP=0) is checked on datasets 1–6, where dataset 6 contains edge cases and

traps.

Results are averaged over 2–3 runs to eliminate random deviations.

Example calculation

Dataset 3 (10,000 photos):

– Expected Duplicate Groups: 5,000

– Groups found: 4,980

– False positives: 0

Recall = 4980 / 5000 = 99.6% ✅

Precision = 4980 / (4980 + 0) = 100% ✅

Core principle: safety is higher priority than speed

When evaluating apps, we follow a simple priority:

Safety > Accuracy > Usability > Speed

A fast app that deletes important files is useless.

A slow but safe app is useful.

Scoring system: 3 levels of criteria

All 53 criteria are divided into three levels by importance:

Level Name Criteria Weight Max points

L1 Must Have 8 ×3 24

Level Name Criteria Weight Max points

L2 Should Have 23 ×2 46

L3 Nice to Have 22 ×1 22

Total 53 92

How to interpret the score

Score Recommendation

71-92 ✅ Recommended

46-70 ⚠️ With caveats

< 46 ❌ Not recommended

Important! Failing any Level 1 criterion automatically falls under "Not recommended,"

regardless of the total score.

Quick check: Use the interactive calculator — it walks you through the criteria and

calculates the score automatically.

Evaluation criteria

Level 1: Must Have (blocking criteria)

Data safety criteria.

Failing any of them means a real risk of file loss.

The app must correctly find duplicates, protect against accidental removal, and guarantee

recoverability.

If at least one criterion is not met, the app is Not recommended, regardless of the total score.

Criterion Description

1.1 Recall ≥ 99% The app must find almost all real duplicates

1.2 False positives = 0% Unique files must never be marked as duplicates

1.3 Removal confirmation Deletion only after explicit user confirmation

1.4 Last file protection The app must prevent deleting ALL files in a group without

special confirmation — at least one must remain

1.5 File integrity Remaining originals must not be damaged

1.6 System file protection Must not search or show duplicates in ~/Library/

1.7 Stability No crashes on test sets (up to 200,000 files)

1.8 Running without Full

Disk Access

Must run in Documents, Desktop, Downloads, etc. without Full

Disk Access

RED FLAGS 🚩

If an app does any of the following, don't use it.

Safety

Allows deleting ALL files in a group without warning

Deletes files immediately without confirmation

Does not show where files are deleted to (Trash or permanently)

Crashes when scanning large numbers of files

Monetization transparency

Not always dangerous, but often a sign of poor UX and wasted time.

Scans for free but requires payment to delete (paywall trap)

Price is not visible until checkout

Free version limitations are not explained upfront

Intrusive ads interfere with app usage

Level 2: Should Have

Functionality and usability criteria.

They cover search settings, performance, working with special sources (Photo Library, iCloud,

external drives), and the quality of the results interface. Without these features, an app can still

be used, but with limitations in certain scenarios.

Criterion Description

2.1 Minimum file size Option to skip small files

2.2 Search types Files, folders, similar photos, similar audio

2.3 Folder duplicates Option to find duplicate folders

2.4 Skip list Option to toggle off folders, files, and extensions

2.5 Baseline time Scanning speed is reasonable

2.6 Pause/cancel Option to stop the scan

2.7 Progress indicator Shows remaining scan progress

2.8 External/network drives USB, NAS, SMB

2.9 Photo Library Works with Photos.app

2.10 Hidden files Finds dotfiles and files flagged as hidden

2.11 Quick Look File preview before removal

2.12 Path/size/date Full information for each file

2.13 Why duplicate Shows hash or confirms "bit-for-bit" match

2.14 Space to be freed Shows how much disk space will be freed

2.15 Autoselect Automatic file selection

2.16 Autoselect rules Configurable rules for automatic selection

Criterion Description

2.17 Open in Finder Option to open a file/folder in Finder

2.18 Removal preview List of files before removal

2.19 Trash vs Permanent Choice between moving to Trash or deleting permanently

2.20 Restore deleted files Deleted files must go to Trash and be recoverable

2.21 Error handling Clear error messages and option to keep going

2.22 Help on error Suggestions on how to fix issues when errors occur

2.23 Partial results Shows what succeeded and what failed if an error occurs

Level 3: Nice to Have

Extra features for advanced users.

Accessibility (VoiceOver, localization), advanced result handling (sorting, search, export), and

alternative actions (moving files to a chosen folder instead of deleting them, replacing

duplicates with symlinks). The lack of these features is not critical, but their availability makes

the app more usable in certain use cases.

Criterion Description

3.1 Dark mode Supports the macOS system Dark Mode

3.2 VoiceOver Accessible for visually impaired users

3.3 Localization Supports 5+ interface languages

3.4 Onboarding First-launch tutorial

3.5 Help/support Built-in help, FAQ, and support contacts

3.6 Clear warnings Warnings explain the risk and recommended action

3.7 Side-by-side comparison Compare two files next to each other

Criterion Description

3.8 Sorting/grouping Sort results by size, date, or path

3.9 Search in results Search and filter field within results

3.10 Metadata (EXIF) Displays EXIF data for photos

3.11 Deselect All Clear all selected files with one click

3.12 Move instead of Delete Move files to a folder instead of deleting them

3.13 Replace with symlink Replace a duplicate with a symbolic link

3.14 Folder merge Merge contents of duplicate folders

3.15 Export report Export results to CSV or PDF

3.16 Session saving Save results after quitting the app

3.17 Operation log View history of removed duplicate files

3.18 Add to Skip List Add exclusions directly from results

3.19 Processing 200K+ files Stable performance with very large volumes

3.20 Interim results Shows results before the scan is finished

3.21 APFS clones Finds clones and warns that removal won't free space

3.22 iCloud Works with evicted (cloud-only) files

How we test: 7 datasets

For objective evaluation purposes, we use standardized test datasets:

Dataset Contents What we test

1 Duplicates and trap files (230

groups × 3 copies)

Detection accuracy

2 200 large files (50 groups × 4

copies)

Performance on large files

3 10,000 photos (5,000 groups × 2

copies)

Typical user scenario

4 200,000 files (1,000 groups ×

200 copies)

Stress test, stability

5 1000 files (100 groups × 10

copies, 15 nesting levels)

Deep folder structures

6 Edge cases* Hidden files, APFS clones, symlinks, .app

bundles, unicode names, long paths

7 1 file in 8 locations Access to different user folders

Datasets used for metric calculation

Recall (L1.1) is calculated on datasets DS1–DS4, where the expected number of duplicate

groups is known in advance.

FP=0 (L1.2) is checked on datasets DS1–DS5.

Datasets DS6–DS7 are used for functional checks (location access and permissions) and

are not included in Recall or FP metric calculation.

*What is included in Edge cases (Dataset 6)

Non-standard macOS cases, where many apps crash:

Zero-byte files

Files with extended attributes (xattr)

Symlinks and hardlinks

App bundles must be treated as single files, not folders

Hidden files (by name .file and by hidden flag)

APFS clones

Files with Unicode characters in names (emoji, hieroglyphs)

Files with very long paths (>255 characters)

Performance baseline

For SSD and Apple Silicon:

Dataset Excellent Acceptable Unacceptable

2 (large files) < 30 sec < 90 sec > 180 sec

3 (10K photos) < 60 sec < 180 sec > 300 sec

4 (200K files) < 5 min < 15 min > 30 min

For Intel Mac, ×1.5-2 of these values is acceptable.

RAM:

< 1 GB — excellent

< 2 GB — acceptable

< 4 GB — borderline

> 4 GB or crash — unacceptable

Risks and common pitfalls

Read before testing!

Dangerous removal scenarios

Scenario Risk

Photo Library Photos.app Direct removal may damage Photos.app library

Music Library Same for Music.app

System files (~Library/, /System/) Risk of breaking macOS

Files in use May be locked or damaged

False results

Case Problem

APFS clones Technically duplicates, but removal does NOT free space

iCloud evicted File may auto-download during scan

Resource forks / xattr Files may differ in invisible metadata

Sandbox limitations App Store version sees fewer files

Common testing mistakes

Compare App Store and non-App Store versions without taking into account Sandbox

Test without Full Disk Access (incomplete results)

Run only one scan instead of 2–3 (scan times vary)

Not to check file recovery BEFORE bulk removal

Testing procedure

Below is a step-by-step guide for full application testing. Each step is tied to specific criteria.

Preparation

Step 0.1. Set up the test environment

1. Create a new macOS user or use a fresh session. We recommend running the test on the

latest macOS on a physical device. Do not use a virtual machine, it distorts the results.

2. Make a note of the configuration:

macOS version: _______________

Hardware (CPU, RAM, disk type): _______________

Test date: _______________

3. Quit all unnecessary applications.

4. Open Activity Monitor to track RAM usage.

Step 0.2. Prepare the application

1. Make a note of app details:

App name and version: _______________

Source (App Store / website): _______________

Price / monetization model: _______________

2. Install the app

3. Launch it and grant Full Disk Access (System Settings → Privacy & Security → Full Disk

Access)

4. Check support:

Apple Silicon support: Native / Rosetta / unknown

Recent app update: _______________

Step 0.3. Create test datasets

All test datasets will be placed in an isolated folder: ~/DuplicateTest/ :

~/DuplicateTest/

├── Dataset_01_AccuracyTest/ # 851 files, 230×3 duplicates, the rest are t

├── Dataset_02_LargeFiles/ # 50 files × 1-30 MB

├── Dataset_03_Photos/ # 10,000 photos

├── Dataset_04_StressTest/ # 200,000 files

├── Dataset_05_DeepNesting/ # 1000 files, 15 levels

├── Dataset_06_EdgeCases/ # Non-standard cases

└── logs/

📦 Scripts for creating test datasets: Download archive

The archive contains bash scripts to automatically create all 7 datasets.

Download and run the scripts in Terminal, they will generate the test datasets.

Dataset 1 — Accuracy Test:

851 files: 690 duplicates (230 groups × 3) + 161 traps

Traps: similar names, different sizes, different dates, different metadata

Generates manifest.json for automated result validation

Expected result: 230 duplicate groups, 3 files per group, 0 false positives

Dataset 2 — Large files:

200 files: 50 originals × 4 copies (originals + copy_A + copy_B + copy_C)

File size: 1–30 MB (dmg, mp4, zip, mov, pkg)

Dataset size: ~3.1 GB

Expected result: 50 groups of 4 files

Dataset 3 — Photos:

10,000 files: 5,000 groups of 2 files

Folder A: 2,500 photos + 2,500 APFS clones (cp -c)

Folder B: 2,500 photos + 2,500 regular copies in subfolder C

File size: ~500 KB (JPEG imitation)

Expected result: 5,000 groups of 2 files

Dataset 4 — Stress test:

200,000 files: 1,000 unique × 200 copies

File size: 20 KB (txt, dat, bin, tmp, log)

Dataset size: 4 GB

Expected result: 1,000 groups of 200 files

https://nektony.com/downloads/duplicate-finder/test-datasets-scripts-df.zip

Dataset 5 — Deep nesting:

1,000 files: 100 unique × 10 copies

Nesting: up to 15 levels, including hidden folders (.hidden, .cache)

File size: ~50 KB (txt, pdf, jpg, png, docx, mp4, zip, json, xml, html)

Expected result: 100 groups of 10 files

Dataset 6 — Edge Cases:

19 files: hidden (by name and flag), symlinks, hardlinks

2 .app bundles, files with extended attributes (xattr)

6 zero-byte files

Expected result: 4 duplicate groups (16 files in groups)

Dataset 7 — Location test:

One file (100 MB) in 8 folders:

~/Documents/dup_location_test/

~/Desktop/dup_location_test/

~/Downloads/dup_location_test/

~/Movies/dup_location_test/

~/Music/dup_location_test/

~/Pictures/dup_location_test/

~/Library/dup_location_test/ (requires Full Disk Access)

~/DuplicateTest/

Expected result: 1 group of 7 files (duplicates in the system folder must be ignored)

Alternative: minimal dataset for quick testing

A ready-to-use minimal dataset for quick app validation. It's enough to check L1 criteria and

basic L2 criteria.

📦 Download minimal dataset: QuickTest.zip (~150 MB)

Dataset structure:

https://nektony.com/downloads/duplicate-finder/quicktest-df.zip

~/DuplicateTest/

├── originals/ ← 10 original files of different types

│ ├── photo.jpg ← photo with EXIF

│ ├── document.pdf

│ ├── video.mp4

│ ├── music.mp3

│ ├── archive.zip

│ ├── text.txt

│ ├── .hidden1.txt ← hidden file #1

│ ├── .hidden2.txt ← hidden file #2

│ ├── large_file.dmg ← file >100 MB

│ ├── emoji_🎉 .txt ← unicode in the name

│ └── similar_name_A.txt ← TRAP (unique content)

│

├── copies/ ← copies of all files from originals

│ ├── photo.jpg

│ ├── ... (all files)

│ └── similar_name_B.txt ← TRAP: similar name, DIFFERENT content!

│

├── nested/ ← deep nesting test

│ └── level1/

│ └── level2/

│ └── level3/

│ └── photo.jpg ← third copy photo.jpg

│

├── .hidden_folder_A/ ← hidden folder #1

│ ├── file1.txt

│ └── file2.txt

│

├── .hidden_folder_B/ ← hidden folder #2 (duplicate)

│ ├── file1.txt

│ └── file2.txt

│

├── folder_dup_A/ ← regular folder #1

│ ├── doc1.txt

│ ├── doc2.txt

│ └── doc3.txt

│

└── folder_dup_B/ ← regular folder #2 (duplicate folder_dup_

 ├── doc1.txt

 ├── doc2.txt

 └── doc3.txt

Expected result:

What should be found Groups Files per group
Folders per

group

video.mov (originals + copies + nested) 1 3 0

photo.jpg (originals + copies + nested) 1 3 0

8 files from originals/copies (2 copies

each)

8 2 0

Files in hidden folders (file1.txt, file2.txt) 2 2 0

Files in regular folders (doc1-3.txt)

or folder_dup_A and folder_dup_B

2

1

3

all files in the

folder

0

2

.hidden_folder_A and .hidden_folder_B 1 all files in the

folder

2

Total duplicates 15 32 4

What should NOT be found:

similar_name_A.txt and similar_name_B.txt — different files, NOT duplicates (trap)

This dataset checks:

✅ Detection accuracy (1.1)

✅ False positives (1.2) — similar_name trap

✅ Hidden files (2.10) — .hidden1.txt, .hidden2.txt

✅ Hidden folders — .hidden_folder_A/B

✅ Folder duplicates (2.3) — folder_dup_A/B

✅ Deep nesting — nested/level1/level2/level3

✅ Unicode in names — emoji_🎉 .txt

✅ Large files — large_file.dmg

⚠️ Limitations: The minimal dataset does not allow you to test stability on large volumes

(1.7) or precise performance baseline (2.5). For full testing, use the scripts.

Phase 0. Initial app review

Goal: Prepare the app for testing and evaluate transparency.

0.1. Monetization and transparency

Launch the app and answer:

Question Answer

Are free version limitations clear BEFORE you start? Yes / No

Is the price visible before purchase? Yes / No

No "trap": free scan but paid removal with no warning? Yes / No

Ads do not interfere with app usage? Yes / No / No ads

Red flag: If the app shows results but requires payment to delete, that's a paywall trap.

0.2. Interface navigation

1. Launch the app and complete onboarding (if any).

2. Find and make a note of:

Where folders for scanning are selected: _______________

Where settings are (filters, skip list): _______________

Where scanning starts: _______________

Where results and removal are shown: _______________

Phase 1. Checking Level 1 (Must Have) criteria

Goal: Verify critical safety requirements. Failing any criterion = "Not recommended".

Before getting started, scan the folder ~/DuplicateTest/ (datasets 1–6).

These scan results will be used in tests below.

1.1. Recall ≥ 99%

Why it matters: The app must find all real duplicates. Missing duplicates means the user won't

free the expected disk space.

How to check:

1. Scan the folder ~/DuplicateTest/ entirely.

2. Make a note of the number of groups and duplicates found.

3. Compare it with the expected numbers.

4. Calculate: Recall = Found / Expected × 100%

Summary table:

Dataset Expected groups Found Recall

1 230

2 50

3 5000

4 1000

5 100

Result:

✅ Recall ≥ 99% on all datasets

❌ FAIL: Recall < 99%

1.2. False positives = 0%

Why it matters: Unique files must never be marked as duplicates. A mistake here can lead to

loss of important data.

How to check:

1. Open 10 random groups in the scan results.

2. For each group, make sure that the files are truly identical:

Same size

Same content (open and compare)

3. Pay special attention to Dataset 1 (traps) and Dataset 6 (edge cases).

4. Make a note of the number of false positives found: _______

Result:

✅ False Positives = 0

❌ FAIL: Unique files found in duplicate groups

1.3. Removal confirmation

Why it matters: An accidental click must not cause data loss. There must be a confirmation

step.

How to check:

1. Select 3–5 files to be deleted.

2. Click Delete/Remove.

3. Is there a confirmation dialog?

4. Does it show:

Number of files

Space size to be freed

Where files will be deleted (Trash / permanently)

Result:

✅ The app shows confirmation with details

❌ FAIL: The app deletes files immediately without confirmation

1.4. Last file protection

Why it matters: You must not be able to delete all files in a group — at least one must remain.

Otherwise, all of the data will be lost.

How to check:

1. Find a group of 2 duplicates.

2. Try selecting BOTH files for removal.

3. Click Delete/Remove.

4. What happens?

Result:

✅ The app does not allow you to select both files

✅ The app allows you to select, but shows a warning before removal

❌ FAIL: The app allows you to remove both files without warning

1.5. File integrity

Why it matters: After deleting a duplicate, the remaining original must not be damaged.

How to check:

1. After deleting a duplicate, locate the remaining original.

2. Open it with the appropriate app:

Photo → Preview or Photos

Video → QuickTime

Document → relevant app

3. Does it open fully and correctly?

4. Repeat for 3-5 various file types.

Result:

✅ All files open correctly

❌ FAIL: At least one file is damaged or won't open

1.6. System file protection

Why it matters: The app must not suggest deleting system files from ~/Library/.

How to check:

1. Scan the ~/Library/ folder.

2. Check whether the app shows files from there in results.

3. If so, try selecting a file from ~/Library/Preferences/ for removal.

Result:

✅ The app does not scan ~/Library/ or does not show files from there in results

✅ The app shows them but blocks removal and explains the reason

⚠️ The app shows and warns, but allows removal

❌ FAIL: The app allows you to delete system files without warning

1.7. Stability

Why it matters: The app must not crash, even on large datasets.

How to check:

1. Scan Dataset 4 (200,000 files).

2. During the scan, check:

If there are any crashes?

If there are any freezes (beachballs)?

3. In Activity Monitor, check:

RAM usage: _______ MB

If memory grows uncontrollably?

Result:

✅ The app is stable and completes the scan, RAM < 4 GB

❌ FAIL: Crash, freeze or RAM > 4 GB

1.8. Running without Full Disk Access

Why it matters: The app must run for users who don't grant Full Disk Access.

How to check:

1. Disable Full Disk Access for the app: System Settings → Privacy & Security → Full Disk

Access → toggle off

2. Restart the app.

3. Try scanning ~/Documents/ , ~/Desktop/ , ~/Downloads/ .

4. See how the app behaves.

Result:

✅ The app allows you to select a folder and scan. Standard user folders can be scanned.

✅ There is a clear message if FDA is required for protected folders.

❌ FAIL: Crash, unclear error, or the app does not run at all.

Level 1 summary

Criterion Result Note

1.1 Recall ≥ 99% ✅ / ❌ Recall: ___%

1.2 False positives = 0% ✅ / ❌ FP: ___

1.3 Removal confirmation ✅ / ❌

1.4 Last file protection ✅ / ❌

1.5 File integrity ✅ / ❌

1.6 System file protection ✅ / ⚠️ / ❌

1.7 Stability ✅ / ❌ RAM: ___ MB

Criterion Result Note

1.8 Running without Full Disk Access ✅ / ❌

Total L1: ___ / 8

Is there at least one ❌ ? → The app automatically gets the status "Not recommended."

Phase 2. Checking Level 2 (Should Have) criteria

Goal: Check the app functionality and usability.

Search settings

2.1. Minimum file size

Why it matters: The app lets you skip tiny files and focus on large duplicates that actually take

up space.

How to check: Is there an option in settings to set a minimum file size?

Result:

✅ Yes, a specific value can be set

❌ No such setting

2.2. Search type selection

Why it matters: A user may only need one type of search — for example, file duplicates only,

without similar photos. Choice saves time.

How to check: Can you choose what to search for?

File duplicates

Similar photos

Similar audio

Result:

✅ Yes, multiple types to choose from

❌ Only one search type

2.3. Folder duplicates

Why it matters: Sometimes entire folders get duplicated (for example, project backups).

Removing a whole folder is more efficient than file by file.

How to check: Is there a mode to find duplicate folders (not just files)?

Result:

✅ Yes, there is such mode

❌ No, files only

2.4. Skip List

Why it matters: It lets you skip folders you don't want scanned (node_modules, .git, caches)

and speeds the search.

How to check: Can you skip folders, files, or extensions from the search?

Result:

✅ Yes (folders + files + extensions)

⚠️ In part (only one of these)

❌ No

Performance

2.5. Baseline time

Why it matters: If scanning is too slow, the app isn't practical for regular use.

How to check: Measure scan time and compare with the baseline:

Dataset Excellent Acceptable Unacceptable

2 (large files) < 30 sec < 90 sec > 180 sec

3 (10K photos) < 60 sec < 180 sec > 300 sec

Dataset Excellent Acceptable Unacceptable

4 (200K files) < 5 min < 15 min > 30 min

Result:

✅ Time is within "Excellent" or "Acceptable"

❌ Time falls under "Unacceptable"

2.6. Cancel/pause

Why it matters: Users need to control the process. If a scan runs too long, there must be a way

to stop it.

How to check:

1. Start scanning a large folder (Dataset 4).

2. Are there Pause and Cancel buttons?

3. Do they work?

Result:

✅ Pause + cancel, both work

⚠️ Cancel only

❌ No way to stop

2.7. Progress indicator

Why it matters: Without a progress indicator, it's impossible to tell if the app is working or

frozen. It's crucial for scanning large drives and folders.

How to check: Do you see progress during the scan?

Progress bar

Percentage complete

Number of processed files

Number of duplicates found

Result:

✅ Informative progress (2+ elements)

❌ No indicator or useless one (stuck at 99%)

Special sources

2.8. External/network drives

Why it matters: Duplicates often pile up on external drives and NAS. The app should handle

different storage locations.

How to check:

1. Connect a USB drive and create a small test folder with duplicates.

2. Does the app show it as a source?

3. Does scanning work?

4. (If so) Check NAS/SMB.

Result:

✅ USB + NAS work

⚠️ USB only

❌ Not supported

2.9. Photo Library

Why it matters: The Photos.app library is one of the largest duplicate sources for regular

users. The app is supposed to handle this library.

How to check:

1. Select ~/Pictures/Photos Library.photoslibrary as a source.

2. Run the scan.

3. Does it find duplicates inside the library?

Result:

✅ It scans and shows duplicates from Photo Library

⚠️ It shows the library as a file but does not show its photos as duplicates

❌ Not supported

2.10. Hidden files

Why it matters: Hidden files (dotfiles or flagged as hidden) can also be duplicates. Skipping

them means an incomplete scan.

How to check:

1. Use Dataset 6 (Edge Cases) — hidden files are in there.

2. Or create .hidden_test.txt and a copy elsewhere.

3. Scan — are hidden duplicates found by the app?

Result:

✅ The app finds hidden files

❌ The app does not find them

Results interface

2.11. Quick Look

Why it matters: Quick Look is the standard macOS preview. Its availability lets you quickly

review files before removal.

How to check: Select a file in results, press Space — does Quick Look work?

Result:

✅ Yes

❌ No

2.12. Path/size/date

Why it matters: This info helps you decide which file to keep based on directory, size, or

modification date.

How to check: For each file in results, is the following shown:

Full path

File size

Date modified (or date created)

Result:

✅ All info available (3/3)

⚠️ In part (1-2 out of 3)

❌ No info

2.13. Why duplicate

Why it matters: Algorithm transparency builds trust. Users should understand why files are

considered duplicates.

How to check: Do results show why files are duplicates?

Hash is shown (MD5, SHA)

The "Bit-for-bit identical" message is shown

Match by size + content is shown

Result:

✅ Reason shown

❌ Not shown

2.14. Space to be freed

Why it matters: The whole point of searching duplicates is to free up space. Users should see

how much space they'll actually free up.

How to check: Can you see how much space will be freed after deleting selected files?

Result:

✅ Yes, I can see (for group or selected files)

❌ No, I can't see

2.15. Autoselect

Why it matters: With thousands of duplicates, manual selection isn't realistic. Autoselect saves

time and reduces mistakes.

How to check: Is there an automatic selection feature?

Result:

✅ Yes

❌ No

2.16. Autoselect rules

Why it matters: Different users have different priorities: keep the newest file, keep files in a

specific folder, etc.

How to check: Can you configure autoselect rules?

Keep newest

Keep oldest

Keep by path (e.g., ~/Documents)

Keep least nested

Result:

✅ There are configurable rules (2+)

⚠️ There is only one option

❌ No configuration (or no autoselect)

2.17. Open in Finder

Why it matters: Sometimes you need to see the file in its folder context — what files are next to

it and what the folder's name is.

How to check: Can you open the file or folder in Finder directly from the results?

Result:

✅ Yes (right click or button)

❌ No

2.18. Removal review

Why it matters: It's the last chance to review what will be deleted. It is especially important to

review selected files after using autoselect.

How to check: Can you review the full list of selected files before removal?

Result:

✅ Yes

❌ No

2.19. Trash vs Permanent

Why it matters: Trash is a safety net against accidental deletions. But sometimes you really do

need to delete files permanently (for example, sensitive data). It's best when you have a choice.

How to check: Is there an option to either move files to Trash or delete them permanently?

Result:

✅ Both options are available

❌ Only one option is available

2.20. Restore works

Why it matters: If a file is deleted by mistake, there must be a way to recover it. The Trash

provides the standard macOS recovery mechanism for that.

How to check:

1. Delete 2-3 files through the app.

2. Open Trash — are the files there?

3. Restore the file (right click → Put Back).

4. Does the file return to its original folder and open correctly?

5. Or, is there a restore command inside the app? (even better, you can immediately see

"your" deleted files)

Result:

✅ Files are in Trash, restore works

❌ Files are permanently deleted or cannot be restored

2.21. Error handling

Why it matters: Errors are inevitable (locked files, no access permissions). The app should

handle them gracefully without interrupting the entire process.

How to check:

1. Lock one duplicate file: Get Info → Locked ✓.

2. Try deleting this file through the app.

3. What happens?

Result:

✅ Clear error message, removal of other files continues

❌ Crash, unclear error, or the entire process stops

2.22. Help on error

Why it matters: A good app not only reports an error but also suggests how to fix it.

How to check: When an error occurs, does the app suggest how to fix it?

Result:

✅ Yes, there is a suggestion (for example, "unlock the file")

❌ No, only an error message

2.23. Partial results

Why it matters: After an operation, the user should clearly understand what actually happened

— how many files were removed, how many were not, and why.

How to check: If removal is partial (some files removed successfully, some failed) — does the

app show what was removed and what wasn't?

Result:

✅ Yes, a detailed report

❌ No information

Level 2 Summary

Criterion Result

2.1 Minimum file size ✅ / ❌

2.2 Search type selection ✅ / ❌

Criterion Result

2.3 Folder duplicates ✅ / ❌

2.4 Skip List ✅ / ⚠️ / ❌

2.5 Baseline time ✅ / ❌

2.6 Cancel/pause ✅ / ⚠️ / ❌

2.7 Progress indicator ✅ / ❌

2.8 External/network drives ✅ / ⚠️ / ❌

2.9 Photo Library ✅ / ⚠️ / ❌

2.10 Hidden files ✅ / ❌

2.11 Quick Look ✅ / ❌

2.12 Path/size/date ✅ / ⚠️ / ❌

2.13 Why duplicate ✅ / ❌

2.14 Space to be freed ✅ / ❌

2.15 Autoselect ✅ / ❌

2.16 Autoselect rules ✅ / ⚠️ / ❌

2.17 Open in Finder ✅ / ❌

2.18 Removal preview ✅ / ❌

2.19 Trash vs Permanent ✅ / ❌

2.20 Restore works ✅ / ❌

2.21 Error handling ✅ / ❌

2.22 Help on error ✅ / ❌

Criterion Result

2.23 Partial results ✅ / ❌

Total L2: ___ / 23

Note: ⚠️ = 0.5 points

Phase 3. Checking Level 3 (Nice to Have) criteria

Goal: Check additional features. Their lack is not critical, but having them improves the overall

experience.

For each criterion: feature present and working → ✅ , otherwise → ❌

3.1. Dark Mode

Why it matters: Many macOS users prefer Dark Mode. A native app should automatically adapt

to system appearance settings.

How to check: System Settings → Appearance → Dark. Does the app switch to Dark Mode?

Result:

✅ Yes

❌ No

3.2. VoiceOver

Why it matters: Visually impaired users should also be able to use the app. VoiceOver support

is a sign of a well-built native app.

How to check: Enable VoiceOver (Cmd+F5) and try navigating. Are key elements read out

loud?

Result:

✅ Yes, navigation works

❌ No or in part

3.3. Localization

Why it matters: Not all users speak English. Localization expands the audience and improves

UX for non-English speakers.

How to check: Are languages other than English supported?

Supported languages: _______________

Result:

✅ 5+ languages

⚠️ 2-4 languages

❌ English only

3.4. Onboarding

Why it matters: New users may not understand how the app works. Onboarding lowers the

learning curve.

How to check: Is there a first-launch tutorial?

Result:

✅ Yes

❌ No

3.5. Help/support

Why it matters: If something is unclear or goes wrong, the user should be able to find help

easily.

How to check: Is there built-in help, FAQ, or quick access to support (Contact Us)?

Result:

✅ Yes

❌ No

3.6. Clear warnings

Why it matters: A good warning explains the risk and helps the user make the right decision.

How to check: Do warnings explain:

What will happen (action)

Why it matters (risk)

What to do (recommendation)

Result:

✅ Yes, warnings are helpful (2+ elements)

❌ No, just "Are you sure?"

3.7. Side-by-side comparison

Why it matters: For visual content (photos, documents), it's convenient to compare files next

to each other to pick the best one.

How to check: Can you compare two files from a group side by side in the interface?

Result:

✅ Yes

❌ No

3.8. Sorting/grouping

Why it matters: Sorting by size helps remove the largest duplicates first and free up space

faster.

How to check: Can you sort results by size, date, or path? Group them?

Result:

✅ Yes

❌ No

3.9. Search in results

Why it matters: With thousands of results, you need a way to quickly find a specific file or

folder.

How to check: Is there a search or filter field in the results?

Result:

✅ Yes

❌ No

3.10. Metadata (EXIF)

Why it matters: EXIF helps you understand which photo is more "original" — by capture date,

camera, geolocation.

Use real camera photos with EXIF data.

How to check: Does the app display EXIF data (capture date, camera, geolocation) for these

photos?

Result:

✅ Yes

❌ No

3.11. Deselect All

Why it matters: If autoselect picked the wrong files, you should be able to quickly reset and

start over.

How to check: Is there a one-click option to clear all selections?

Result:

✅ Yes

❌ No

3.12. Move instead of Delete

Why it matters: Sometimes you may want to move duplicates to a separate folder for manual

review instead of deleting them right away.

How to check: Is there an option to move files to a folder instead of deleting them?

Result:

✅ Yes

❌ No

3.13. Replace with symlink

Why it matters: A symlink lets you keep a file "in place" (for compatibility), but free up space —

the link itself takes up almost no space.

How to check: Can you replace a duplicate with a symbolic link?

Result:

✅ Yes

❌ No

3.14. Folder merge

Why it matters: If two folders duplicate each other in part, it's more convenient to merge them

than delete files one by one.

How to check: Is there a feature to merge contents of duplicate folders?

Result:

✅ Yes

❌ No

3.15. Export report

Why it matters: For documentation, auditing, or analysis in other tools, exporting results is

useful.

How to check: Can you export results (CSV, PDF, txt)?

Format(s): _______________

Result:

✅ Yes

❌ No

3.16. Session saving

Why it matters: Scanning can take time. If you close the app, results shouldn't be lost.

How to check: Close the app after scanning, reopen it. Are the results saved?

Result:

✅ Yes

❌ No

3.17. Operation log

Why it matters: A history of actions helps you understand what was deleted and recover files if

needed.

How to check: Is there a history of removed files or an activity log?

Where to find: _______________

Result:

✅ Yes

❌ No

3.18. Add to Skip List

Why it matters: If you see a file in the results that shouldn't be removed, it's convenient to skip

it right from there.

How to check: Can you add a file or folder to the skip list directly from the results?

Result:

✅ Yes

❌ No

3.19. Processing 200K+ files

Why it matters: Some users have hundreds of thousands of files. The app should handle large

volumes without freezing.

How to check: On Dataset 4 (200,000 files), is the app stable and the UI responsive?

Result:

✅ Yes

❌ No (lags, freezes)

3.20. Interim results

Why it matters: During long scans, it's convenient to see interim results and start working with

them before the scan finishes.

How to check: During scanning, are already found duplicates displayed before completion?

Result:

✅ Yes

❌ No

3.21. APFS clones

Why it matters: APFS clones use Copy-on-Write. In this case, deleting a clone does NOT free

up space. The user needs to know that.

How to check:

1. Create a file clone: select a file → Cmd+D (creates an APFS clone).

2. Scan the folder with the original and the clone.

3. Does the app warn that deleting the clone will NOT free up space?

Result:

✅ Recognizes clones + warns

⚠️ Finds them, but does not warn

❌ Does not recognize clones

3.22. iCloud

Why it matters: Many users store files in iCloud. The app should properly handle files that exist

"in the cloud only".

How to check:

1. Put a file into iCloud Drive.

2. Right click → Remove Download (file remains only in the cloud).

3. Scan iCloud Drive — does the app see the evicted file?

Result:

✅ The app works with evicted files

❌ The app does not see them or downloads them automatically

Level 3 Summary

Criterion Result

3.1 Dark Mode ✅ / ❌

3.2 VoiceOver ✅ / ❌

3.3 Localization ✅ / ⚠️ / ❌

3.4 Onboarding ✅ / ❌

3.5 Help/support ✅ / ❌

3.6 Clear warnings ✅ / ❌

3.7 Side-by-side comparison ✅ / ❌

3.8 Sorting/grouping ✅ / ❌

3.9 Search in results ✅ / ❌

3.10 Metadata (EXIF) ✅ / ❌

3.11 Deselect All ✅ / ❌

3.12 Move instead of Delete ✅ / ❌

3.13 Replace with symlink ✅ / ❌

3.14 Folder merge ✅ / ❌

3.15 Export report ✅ / ❌

3.16 Session saving ✅ / ❌

3.17 Operation log ✅ / ❌

Criterion Result

3.18 Add to Skip List ✅ / ❌

3.19 Processing 200K+ files ✅ / ❌

3.20 Interim results ✅ / ❌

3.21 APFS clones ✅ / ⚠️ / ❌

3.22 iCloud ✅ / ❌

Total L3: ___ / 22

Note: ⚠️ = 0.5 points

Total score calculation

Formula

Total score = (L1 × 3) + (L2 × 2) + (L3 × 1)

Example: (7 × 3) + (18 × 2) + (15 × 1) = 21 + 36 + 15 = 72 балла

Your result

Level 1: ___ / 8 × 3 = ___

Level 2: ___ / 23 × 2 = ___

Level 3: ___ / 22 × 1 = ___

─────────────────────────────

TOTAL: ___ / 92

Interpretation

Score Recommendation

71-92 ✅ Recommended

46-70 ⚠️ With caveats

< 46 or L1 failure ❌ Not recommended

Final report template

App details

String Value

App name

Version

Source (App Store / website)

Price / monetization model

Test date

macOS version

Hardware (CPU, RAM, disk)

Tester

Performance

Dataset Time RAM (MB) Groups found Expected Recall

1 230

2 50

Dataset Time RAM (MB) Groups found Expected Recall

3 5000

4 1000

5 100

6 — — 4

7 — — 1

Total score

Level 1: ___ / 8 × 3 = ___

Level 2: ___ / 23 × 2 = ___

Level 3: ___ / 22 × 1 = ___

─────────────────────────────

TOTAL: ___ / 92

Conclusion

Blockers (L1 failure):

Main drawbacks:

Strengths:

RECOMMENDATION:

✅ Recommended (71-92, no L1 failures)

⚠️ With caveats (46-70)

❌ Not recommended (<46 or L1 failure)

Evaluate the app yourself

We've created an interactive calculator to help you evaluate any app based on our

methodology:

→ Open the evaluation calculator

The calculator will:

Walk you through 53 criteria

Calculate the score automatically

Show the recommendation

Save progress (you can come back later)

Export the result to a file

Download the full methodology

For QA engineers and journalists, the full version of the methodology with test dataset creation

scripts is available:

📦 Download test dataset scripts 📦 Download minimal dataset QuickTest.zip

QuickTest.zip (~150 MB) — for quick validation of L1 and basic L2 criteria

Includes:

Detailed description of all 53 criteria

Scripts for generating test datasets

Final report template

Minimal dataset for quick testing

https://nektony.com/resources/duplicate-finder-calculator
https://nektony.com/downloads/duplicate-finder/test-datasets-scripts-df.zip
https://nektony.com/downloads/duplicate-finder/quicktest-df.zip

Frequently asked questions

Why do you publish the methodology if you develop a Duplicate Finder

yourself?

We believe transparency builds trust. A transparent methodology allows anyone to verify our

statements. If our product is good, it will show. If not, we'll learn what needs to be improved.

Can this methodology be used for other categories of apps?

In part. The removal safety criteria (L1) and UX criteria (L3) apply to any cleaning utilities. The

specific criteria (Photo Library, APFS clones) apply only to duplicate finders.

Can I suggest a new criterion?

Yes! Email us at support@nektony.com. We'll consider your suggestion for the next version.

Disclaimer

This methodology is provided "as is" for reference only.

Limitations

Test results may vary depending on the app version, macOS version, hardware

configuration, and test data.

This methodology is not exhaustive and does not cover all possible use cases.

Scores and recommendations are advisory in nature.

Liability

Nektony shall not be liable for decisions made based on test results using this methodology.

The user shall be solely liable for choosing their software and for the consequences of using

them.

It is always recommended to create backups before deleting files.

Conflict of interests

mailto:support@nektony.com

Nektony develops Duplicate File Finder — an app in the tested category. We publish this

methodology transparently and apply it to our own products. Independent verification of results

is welcome.

License

This methodology is distributed under the Creative Commons Attribution 4.0 (CC BY 4.0)

license.

You are free to:

Copy and redistribute

Adapt and create derivative works

Use commercially

With attribution: "Methodology for Evaluating Duplicate Finder Apps for macOS" © Nektony,

2026

Questions and feedback

Found an issue in the methodology? Want to suggest a new criterion?

Contact us: support@nektony.com

Last updated: February 2026 (version 1.0)

Related materials

Duplicate Finder Evaluation Calculator

Comparison of Popular Duplicate Finder Apps for Mac (2025)

https://nektony.com/duplicate-finder-free
mailto:support@nektony.com
https://nektony.com/resources/duplicate-finder-calculator
https://nektony.com/reviews/best-duplicate-file-finder-mac

Duplicate File Finder by Nektony

https://nektony.com/duplicate-finder-free

